Skip to main content

Bayesian Learning of Biodiversity Models Using Repeated Observations

  • Chapter
  • First Online:
  • 2046 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2259))

Abstract

Predictive biodiversity distribution models (BDM) are useful for understanding the structure and functioning of ecological communities and managing them in the face of anthropogenic disturbances. In cases where their predictive performance is good, such models can help fill knowledge gaps that could only otherwise be addressed using direct observation, an often logistically and financially onerous prospect. The cornerstones of such models are environmental and spatial predictors. Typically, however, these predictors vary on different spatial and temporal scales than the biodiversity they are used to predict and are interpolated over space and time. We explore the consequences of these scale mismatches between predictors and predictions by comparing the results of BDMs built to predict fish species richness on Australia’s Great Barrier Reef. Specifically, we compared a series of annual models with uninformed priors with models built using the same predictors and observations, but which accumulated information through time via the inclusion of informed priors calculated from previous observation years. Advantages of using informed priors in these models included (1) down-weighting the importance of a large disturbance, (2) more certain species richness predictions, (3) more consistent predictions of species richness and (4) increased certainty in parameter coefficients. Despite such advantages, further research will be required to find additional ways to improve model performance.

Ana M. M. Sequeira and M. Julian Caley are co-first authors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H. Assareh, I. Smith, K.L. Mengersen, Bayesian change point detection in monitoring clinical outcomes, in Case Studies in Bayesian Statistical Modelling and Analysis, ed. by C. L. Alston, K. L. Mengersen, A. N. Pettitt, (Wiley, Chichester, 2012)

    Google Scholar 

  2. R. Beeden, J. Maynard, M. Puotinen, P. Marshall, J. Dryden, J. Goldberg, G. Williams, Impacts and recovery from severe tropical cyclone Yasi on the Great Barrier Reef. PLoS One 10, e0121272 (2015)

    Article  Google Scholar 

  3. L. Broemeling, Bayesian Methods for Repeated Measures (Chapman and Hall/CRC, New York, 2016)

    MATH  Google Scholar 

  4. B.J. Cardinale, J.E. Duffy, A. Gonzalez, D.U. Hooper, C. Perrings, P. Venail, A. Narwani, G.M. Mace, D. Tilman, D.A. Wardle, A.P. Kinzig, G.C. Daily, M. Loreau, J.B. Grace, A. Larigauderie, D.S. Srivastava, S. Naeem, Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012)

    Article  Google Scholar 

  5. J.H. Connell, Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978)

    Article  Google Scholar 

  6. P.K. Dayton, Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr. 41, 351–389 (1971)

    Article  Google Scholar 

  7. R. Fisher, B.T. Radford, N. Knowlton, R.E. Brainard, F.B. Michaelis, M.J. Caley, Global mismatch between research effort and conservation needs of tropical coral reefs. Conserv. Lett. 4, 64–72 (2011)

    Article  Google Scholar 

  8. A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, D. Rubin, Bayesian Data Analysis (Chapman and Hall, New York, 2015)

    MATH  Google Scholar 

  9. A.R. Halford, M.J. Caley, Towards an understanding of resilience in isolated coral reefs. Glob. Chang. Biol. 15, 3031–3045 (2009)

    Article  Google Scholar 

  10. A.R. Halford, A.A. Thompson, Visual Census Surveys of Reef Fish. Long Term Monitoring of the Great Barrier Reef Standard Operational Procedure Number 3 (Australian Institute of Marine Science, Townsville, 1996)

    Google Scholar 

  11. A.R. Ives, S.R. Carpenter, Stability and diversity of ecosystems. Science 317, 58–62 (2007)

    Article  Google Scholar 

  12. S.Y. Kang, J.M. McGree, C.C. Drovandi, M.J. Caley, K.L. Mengersen, Bayesian adaptive design: improving the effectiveness of monitoring of the Great Barrier Reef. Ecol. Appl. 26, 2635–2646 (2016)

    Article  Google Scholar 

  13. G.M. Lovett, D.A. Burns, C.T. Driscoll, J.C. Jenkins, M.J. Mitchell, L. Rustad, J.B. Shanley, G.E. Likens, R. Haeuber, Who needs environmental monitoring? Front. Ecol. Environ. 5, 253–260 (2007)

    Article  Google Scholar 

  14. S.A. Matthews, C. Mellin, A. MacNeil, S.F. Heron, W. Skirving, M. Puotinen, M.J. Devlin, M. Pratchett, High-resolution characterization of the abiotic environment and disturbance regimes on the Great Barrier Reef, 1985–2017. Ecology 100, e02574 (2019)

    Article  Google Scholar 

  15. C. Mellin, C.J.A. Bradshaw, M.G. Meekan, M.J. Caley, Environmental and spatial predictors of species richness and abundance in coral reef fishes. Glob. Ecol. Biogeogr. 19, 212–222 (2010)

    Article  Google Scholar 

  16. C. Mellin, M. Aaron MacNeil, A.J. Cheal, M.J. Emslie, M. Julian Caley, Marine protected areas increase resilience among coral reef communities. Ecol. Lett. 19, 629–637 (2016)

    Article  Google Scholar 

  17. R.B. Millar, Comparison of hierarchical Bayesian models for overdispersed count data using DIC and Bayes’ factors. Biometrics 65, 962–969 (2009)

    Article  MathSciNet  Google Scholar 

  18. N. Myers, R.A. Mittermeier, C.G. Mittermeier, G.A.B. da Fonseca, J. Kent, Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000)

    Article  Google Scholar 

  19. J.D. Nichols, B.K. Williams, Monitoring for conservation. Trends Ecol. Evol. 21, 668–673 (2006)

    Article  Google Scholar 

  20. R.T. Paine, S.A. Levin, Intertidal landscapes: disturbance and the dynamics of pattern. Ecol. Monogr. 51, 145–178 (1981)

    Article  Google Scholar 

  21. S.T.A. Pickett, P.S.E. White, The Ecology of Natural Disturbance and Patch Dynamics (Academic, London, 1985)

    Google Scholar 

  22. S.L. Pimm, The complexity and stability of ecosystems. Nature 307, 321–326 (1984)

    Article  Google Scholar 

  23. S. Sarkka, Bayesian Filtering and Smoothing (Cambridge University Press, Cambridge, 2013)

    Book  Google Scholar 

  24. A.M.M. Sequeira, C. Mellin, H.M. Lozano-Montes, M.A. Vanderklift, R.C. Babcock, M.D.E. Haywood, J.J. Meeuwig, M.J. Caley, Transferability of predictive models of coral reef fish species richness. J. Appl. Ecol. 53, 64–72 (2016)

    Article  Google Scholar 

  25. A.M.M. Sequeira, P.J. Bouchet, K.L. Yates, K. Mengersen, M.J. Caley, Transferring biodiversity models for conservation: opportunities and challenges. Methods Ecol. Evol. 9, 1250–1264 (2018)

    Article  Google Scholar 

  26. A.M.M. Sequeira, C. Mellin, H.M. Lozano-Montes, J.J. Meeuwig, M.A. Vanderklift, M.D.E. Haywood, R.C. Babcock, M.J. Caley, Challenges of transferring models of fish abundance between coral reefs. PeerJ 6, e4566 (2018)

    Article  Google Scholar 

  27. W.P. Sousa, The role of disturbance in natural communities. Annu. Rev. Ecol. Syst. 15, 353–391 (1984)

    Article  Google Scholar 

  28. H. Sweatman, A. Cheal, G. Coleman, M. Emslie, K. Johns, M. Jonker, I. Miller, K. Osborne, Long-Term Monitoring of the Great Barrier Reef. Status Report No 8 (Australian Institute of Marine Science, Townsville, 2008)

    Google Scholar 

  29. D. Tilman, J.A. Downing, Biodiversity and stability in grasslands. Nature 367, 363 (1994)

    Article  Google Scholar 

  30. J. Vercelloni, K. Mengersen, F. Ruggeri, M.J. Caley, Improved coral population estimation reveals trends at multiple scales on Australia’s Great Barrier Reef. Ecosystems 20, 1337–1350 (2017)

    Article  Google Scholar 

  31. B. Worm, E.B. Barbier, N. Beaumont, J.E. Duffy, C. Folke, B.S. Halpern, J.B.C. Jackson, H.K. Lotze, F. Micheli, S.R. Palumbi, E. Sala, K.A. Selkoe, J.J. Stachowicz, R. Watson, Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006)

    Article  Google Scholar 

  32. K.L. Yates, C. Mellin, M.J. Caley, B.T. Radford, J.J. Meeuwig, Models of marine fish biodiversity: assessing predictors from three habitat classification schemes. PLoS One 11, e0155634 (2016)

    Article  Google Scholar 

  33. K.L. Yates, P.J. Bouchet, M.J. Caley, K. Mengersen, C.F. Randin, S. Parnell, A.H. Fielding, A.J. Bamford, S. Ban, A.M. Barbosa, C.F. Dormann, J. Elith, C.B. Embling, G.N. Ervin, R. Fisher, S. Gould, R.F. Graf, E.J. Gregr, P.N. Halpin, R.K. Heikkinen, S. Heinänen, A.R. Jones, P.K. Krishnakumar, V. Lauria, H. Lozano-Montes, L. Mannocci, C. Mellin, M.B. Mesgaran, E. Moreno-Amat, S. Mormede, E. Novaczek, S. Oppel, G. Ortuño Crespo, A.T. Peterson, G. Rapacciuolo, J.J. Roberts, R.E. Ross, K.L. Scales, D. Schoeman, P. Snelgrove, G. Sundblad, W. Thuiller, L.G. Torres, H. Verbruggen, L. Wang, S. Wenger, M.J. Whittingham, Y. Zharikov, D. Zurell, A.M.M. Sequeira, Outstanding challenges in the transferability of ecological models. Trends Ecol. Evol. 33, 790–802 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. M. Sequeira .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Table S1

Coefficient estimates and standard deviations for all models across all datasets when using informative priors. Estimates for which the 68% and 95% credible intervals cross zero are shown in light and dark grey respectively, indicating no substantive effect from the respective predictor. All models include a random intercept α j for the jth reef, with α j ~ N(μ α, σ α 2). Model descriptions are given in Table 15.1 (DOCX 60 kb)

Table S2

Coefficient estimates and standard deviations for all models across all datasets when using informative priors. Estimates for which the 68% and 95% credible intervals cross zero are shown in light and dark grey respectively, indicating no substantive effect from the respective predictor. Model descriptions are given in Table 15.1 (DOCX 60 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sequeira, A.M.M., Caley, M.J., Mellin, C., Mengersen, K.L. (2020). Bayesian Learning of Biodiversity Models Using Repeated Observations. In: Mengersen, K., Pudlo, P., Robert, C. (eds) Case Studies in Applied Bayesian Data Science. Lecture Notes in Mathematics, vol 2259. Springer, Cham. https://doi.org/10.1007/978-3-030-42553-1_15

Download citation

Publish with us

Policies and ethics