Skip to main content

Advertisement

Log in

Impact of the quasi-biennial oscillation on predictability of the Madden–Julian oscillation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Madden–Julian oscillation (MJO) during boreal winter is observed to be stronger during the easterly phase of the quasi-biennial oscillation (QBO) than during the westerly phase, with the QBO zonal wind at 50 hPa leading enhanced MJO activity by about 1 month. Using 30 years of retrospective forecasts from the POAMA coupled model forecast system, we show that this strengthened MJO activity during the easterly QBO phase translates to improved prediction of the MJO and its convective anomalies across the tropical Indo-Pacific region by about 8 days lead time relative to that during westerly QBO phases. These improvements in forecast skill result not just from the fact that forecasts initialized with stronger MJO events, such as occurs during QBO easterly phases, have greater skill, but also from the more persistent behaviour of the MJO for a similar initial amplitude during QBO easterly phases as compared to QBO westerly phases. The QBO is thus an untapped source of subseasonal predictability that can provide a window of opportunity for improved prediction of global climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml.

  2. E.g. http://iri.columbia.edu/docs/CSP/CSP3_Final.pdf.

References

  • Alves O, Wang G, Zhong A, Smith N, Tzeitkin F, Warren G, Schiller A, Godfrey S, Meyers G (2003) POAMA: Bureau of Meteorology operational coupled model forecast system. In: Proceedings of national drought forum, Brisbane, April 2003, pp 49–56. Available from DPI Publications, Department of Primary Industries, GPO Box 46, Brisbane, QLD 4001

  • Baldwin MP, Gray LJ, Dunkerton TJ, Hamilton K, Haynes PH, Randel WJ, Holton JR, Alexander MJ, Hirota I, Horinouchi T, Jones DBA, Kinnersley JS, Marquardt C, Sato K, Takahashi M (2001) Quasi-biennial oscillation. Rev Geophys 39:179–229

    Article  Google Scholar 

  • Boer GJ, Hamilton K (2008) QBO influence on extratropical predictive skill. Clim Dyn 31:987–1000

    Article  Google Scholar 

  • Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009

    Article  Google Scholar 

  • Collimore CC, Martin DW, Hitchman MH, Huesmann A, Waliser DE (2003) On the relationship between the QBO and tropical deep convection. J Clim 16:2552–2568

    Article  Google Scholar 

  • Colman R, Deschamps L, Naughton M, Rikus L, Sulaiman A, Puri K, Roff G, Sun Z, Embury G (2005) BMRC atmospheric model (BAM) version3.0: comparison with mean climatology. BMRC research report no. 108, Bur Met, Melbourne

  • Ebdon RA (1960) Notes on the wind flow at 50 mb in tropical and subtropical regions in January 1957 and in 1958. Q J R Meteorol Soc 86:540–542

    Article  Google Scholar 

  • Garfinkel CI, Hartmann DL (2011) The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models: part I—simplified dry GCMs. J Atmos Sci 68:1273–1289

    Article  Google Scholar 

  • Geller MA, Shen W, Zhang M, Tan W-W (1997) Calculations of the stratospheric quasi-biennial oscillation for time-varying wave forcing. J Atmos Sci 54:883–894

    Article  Google Scholar 

  • Hamilton K (1984) Mean wind evolution through the quasi-biennial cycle in the tropical lower stratosphere. J Atmos Sci 41:2113–2125

    Article  Google Scholar 

  • Hendon HH, Liebmann B (1990) The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. J Atmos Sci 47:2909–2923

    Article  Google Scholar 

  • Holton JR, Lindzen RS (1972) An updated theory for the quasi-biennial cycle of the tropical stratosphere. J Atmos Sci 29:1076–1080

    Article  Google Scholar 

  • Holton JR, Tan H-C (1980) The influence of the equatorial quasibiennial oscillation on the global circulation at 50 mb. J Atmos Sci 37:2200–2208

    Article  Google Scholar 

  • Hudson D, Alves O, Hendon HH, Wang G (2011) The impact of atmospheric initialisation on seasonal prediction of tropical Pacific SST. Clim Dyn 36:1155–1171

    Article  Google Scholar 

  • Hudson D, Marshall A, Yin Y, Alves O, Hendon H (2013) Improving intraseasonal prediction with a new ensemble generation strategy. Mon Weather Rev 141:4429–4449

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kumar V, Dhaka SK, Reddy KK, Gupta A, Surendra Prasad SB, Panwar V, Singh N, Ho S-P, Takahashi M (2014) Impact of quasi-biennial oscillation on the inter-annual variability of the tropopause height and temperature in the tropics: a study using COSMIC/FORMOSAT-3 observations. Atmos Res 139:62–70

    Article  Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete (Interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277

    Google Scholar 

  • Liess S, Geller MA (2012) On the relationship between QBO and distribution of tropical deep convection. J Geophys Res 117:D3. doi:10.1029/2011JD016317

    Article  Google Scholar 

  • Lin H, Brunet G, Derome J (2008) Forecast skill of the Madden–Julian oscillation in two Canadian atmospheric models. Mon Weather Rev 136:4130–4149

    Article  Google Scholar 

  • Lindzen RS, Holton JR (1968) A theory of the quasi-biennial oscillation. J Atmos Sci 25:1095–1107

    Article  Google Scholar 

  • Madden RA, Julian PR (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708

    Article  Google Scholar 

  • Maharaj EA, Wheeler MC (2005) Forecasting an index of the Madden-oscillation. Int J Clim 25:1611–1618

    Article  Google Scholar 

  • Mapes BE (2000) Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J Atmos Sci 57:1515–1535

    Article  Google Scholar 

  • Mapes BE, Tulich S, Lin JL, Zuidema P (2006) The mesoscale convection life cycle: building block or prototype for large scale tropical waves? Dyn Atmos Oceans 42:3–29

    Article  Google Scholar 

  • Marshall AG, Scaife AA (2009) Impact of the QBO on surface winter climate. J Geophys Res 114:D18110. doi:10.1029/2009JD011737

    Article  Google Scholar 

  • Marshall AG, Hudson D, Wheeler MC, Hendon HH, Alves O (2011) Assessing the simulation and prediction of rainfall associated with the MJO in the POAMA seasonal forecast system. Clim Dyn 37:2129–2141

    Article  Google Scholar 

  • Marshall AG, Hudson D, Wheeler MC, Hendon HH, Alves O (2012) Simulation and prediction of the MJO and its teleconnections using POAMA. CAWCR technical report no 056:113–116

  • Marshall AG, Hendon HH, Durrant TH, Hemer MA (2015) Madden Julian Oscillation impacts on global ocean surface waves. Ocean Model 96:136–147

    Article  Google Scholar 

  • Moncrieff MW, Waliser DE, Miller MJ, Shapiro ME, Asrar G, Caughey J (2012) Multiscale convective organization and the YOTC virtual global field Campaign. Bull Am Meteorol Soc 93:1171–1187

    Article  Google Scholar 

  • Neena JM, Lee JY, Waliser D, Wang B, Jiang X (2014) Predictability of the Madden–Julian oscillation in the intraseasonal variability hindcast experiment (ISVHE). J Clim 27:4531–4543

    Article  Google Scholar 

  • Nie J, Sobel AH (2015) Responses of deep tropical convection to the QBO: cloud-resolving simulations. J Atmos Sci 72:3625–3638

    Article  Google Scholar 

  • Rashid H, Hendon HH, Wheeler M, Alves O (2011) Prediction of the Madden–Julian oscillation with the POAMA dynamical seasonal prediction system. Clim Dyn 36:649–661

    Article  Google Scholar 

  • Reed RJ, Campbell WJ, Rasmussen LA, Rogers RG (1961) Evidence of a downward propagating annual wind reversal in the equatorial stratosphere. J Geophys Res 66:813–818

    Article  Google Scholar 

  • Rowell DP (1998) Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulations. J Clim 11:109–120

    Article  Google Scholar 

  • Salby ML, Hendon HH (1994) Intraseasonal behaviour of clouds, temperature, and motion in the tropics. J Atmos Sci 51:2207–2224

    Article  Google Scholar 

  • Schiller A, Godfrey JS, McIntosh P, Meyers G (1997) A global ocean general circulation model climate variability studies. CSIRO Marine research report No 227

  • Seo J, Choi W, Youn D, Park D-SR, Kim JY (2013) Relationship between the stratospheric quasi-biennial oscillation and the spring rainfall in the western North Pacific. Geophys Res Lett 40:5949–5953

    Article  Google Scholar 

  • Shi L, Alves O, Hendon HH, Wang G, Anderson D (2009) The role of stochastic forcing in ensemble forecasts of the 1997/98 El Nino. J Clim 22:2526–2540

    Article  Google Scholar 

  • Stockdale TN (1997) Coupled ocean-atmosphere forecasts in the presence of climate drift. Mon Weather Rev 125:809–818

    Article  Google Scholar 

  • Student (1908) The probable error of a mean. Biometrika 6:1–25

    Article  Google Scholar 

  • Taguchi M (2010) Observed connection of the stratospheric quasi-biennial oscillation with El Niño-Southern oscillation in radiosonde data. J Geophys Res 115:D18120. doi:10.1029/2010JD014325

    Article  Google Scholar 

  • Thompson DWJ, Baldwin MP, Wallace JM (2002) Stratospheric connection to Northern Hemisphere wintertime weather: implications for prediction. J Clim 15:1421–1428

    Article  Google Scholar 

  • Virts KS, Wallace JM (2014) Observations of temperature, wind, cirrus, and trace gases in the tropical tropopause transition layer during the MJO. J Atmos Sci 71:1143–1157

    Article  Google Scholar 

  • Vitart F (2009) Impact of the Madden–Julian oscillation on tropical storms and risk of landfall in the ECMWF forecast system. Geophys Res Lett 36:L15802. doi:10.1029/2009GL039089

    Article  Google Scholar 

  • Vitart F, Molteni F (2010) Simulation of the Madden–Julian oscillation and its teleconnections in the ECMWF forecast system. Q J R Meteorol Soc 136:842–855

    Article  Google Scholar 

  • Vitart F, Leroy A, Wheeler MC (2010) A comparison of dynamical and statistical predictions of weekly tropical cyclone activity in the Southern Hemisphere. Mon Weather Rev 138:3671–3682

    Article  Google Scholar 

  • Waliser DE, Weickmann K, Dole R, Schubert S, Alves O, Jones C, Newman M, Pan H-L, Roubicek A, Saha S, Smith C, Van den Dool H, Vitart F, Wheeler M, Whitaker J (2006) The experimental MJO prediction project. Bull Am Meteorol Soc 87:425–431

    Article  Google Scholar 

  • Wheeler MC, Hendon HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932

    Article  Google Scholar 

  • Yin Y, Alves O, Oke PR (2011) An ensemble ocean data assimilation system for seasonal prediction. Mon Weather Rev 139:786–808

    Article  Google Scholar 

  • Yoo C, Son S-W (2016) Modulation of the boreal wintertime Madden–Julian oscillation by the stratospheric quasi-biennial oscillation. Geophys Res Lett. doi:10.1002/2016GL067762

    Google Scholar 

  • Zhang C (2013) Madden–Julian oscillation: bridging weather and climate. Bull Am Meteorol Soc 94:1849–1870

    Article  Google Scholar 

Download references

Acknowledgments

All data for this paper is properly cited and referred to in the reference list. We thank James Risbey and Hanh Nguyen for reviewing earlier versions of this manuscript. SWS and YL’s works were funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA 2015-2094 and 2015-2100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew G. Marshall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marshall, A.G., Hendon, H.H., Son, SW. et al. Impact of the quasi-biennial oscillation on predictability of the Madden–Julian oscillation. Clim Dyn 49, 1365–1377 (2017). https://doi.org/10.1007/s00382-016-3392-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3392-0

Keywords

Navigation