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How did Homo erectus reach 
Java? Least-cost pathway 
models and a consideration 
of possible Sumatran routes
Julien Louys and Shimona Kealy

Abstract
The earliest Homo erectus remains in Southeast Asia are in opposite reaches of this geographical 
region. H. erectus material from Gongwangling, China, and Mojokerto, Java, represent some of the 
earliest body fossils recovered for this species, but very few H. erectus records exist from between these 
regions. We examine possible routes that H. erectus could have taken on their journey southward, 
using a least-cost pathway analysis. Our models suggest that the easiest pathway ran through the 
centre of Sundaland, an area now almost entirely submerged. During periods of higher sea-levels, 
however, the pathway moved west and could coincide with emergent areas on or just off the east coast 
of Sumatra. Geological conditions on the east coast of Sumatra, while of the right age to contain 
early hominin remains, are not conducive to the preservation of fossil material or the retention of 
suitable quarries for stone artefact production. The Riau archipelago also lies on probable migration 
routes; however, geological outcrops of the right age will probably be difficult to find there.

Keywords: Indomalayan, Indonesia, island Southeast Asia, hominin dispersal, palaeogeographic 
reconstruction, remote survey, sea-level rise, Sunda Shelf

Abstrak
Peninggalan Homo erectus paling awal di Asia Tenggara secara geografis berada di jangkauan yang 
berlawanan arah pada wilayah ini. Sisa-sisa Homo erectus dari Gongwangling, Cina, dan Mojokerto, 
Jawa, mewakili beberapa fosil tubuh paling awal yang ditemukan untuk spesies ini, tetapi sangat 
sedikit catatan yang ditemukan di antaranya. Kami meneliti kemungkinan rute yang dapat 
ditempuh Homo erectus dalam perjalanannya ke selatan menggunakan analisis jalur paling optimal 
dengan upaya paling rendah. Model kami menunjukkan bahwa jalur paling optimum terletak di 
tengah-tengah Sundaland, daerah yang sekarang hampir seluruhnya terendam di bawah permukaan 
laut. Namun, selama periode permukaan laut yang lebih tinggi, jalur tersebut bergeser ke barat dan 
mungkin berhimpitan dengan daerah yang terpapar atau di lepas pantai timur Sumatra. Kondisi 
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geologi di pantai timur Sumatra, meskipun secara umur sesuai dengan okupansi hominin awal, 
tidak kondusif untuk pengawetan material fosil atau retensi sumber alat-alat batu yang melimpah. 
Kepulauan Riau juga terletak pada rute migrasi yang memungkinkan; namun, singkapan geologi 
dengan umur yang sesuai kemungkinan sulit ditemukan di sini.

Kata kunci: Indomalaya, Indonesia, Kepulauan Asia Tenggara, penyebaran hominin, rekonstruksi 
paleogeografi, survei jarak jauh, kenaikan muka air laut, Paparan Sunda

Introduction
Situated between China and Java is a region that has, surprisingly, been mostly free of direct 
physical traces of the first Asian hominin Homo erectus. The earliest dated evidence of the presence 
of hominins in Asia is currently that obtained from the sites of Majuangou in the Nihewan 
Basin of northern China and Shangchen in the southern Loess Plateau of north-central China. 
Magnetostratigraphic dating at Majuangou identified geomagnetic events bracketing artefact layers 
between 1.77 Ma and 1.24 Ma and provides an interpolated age of c. 1.66 Ma for the lowest artefact 
level (Ao et al. 2013; Zhu R.X. et al. 2004). Shangchen has been dated to approximately 2.1 Ma 
based on magnetostratigraphic and loess profile correlations (Zhu Z.Y. et al. 2018). However, these 
sites preserve only Mode 1 chopper–chopping tools, not body fossils, and without the latter, the 
identity of the tool-makers remains somewhat speculative.

The earliest dated hominin fossils from Asia, assigned to Homo erectus, are derived from the paleosol 
sequences of the Luochuan Sequence in Gongwangling, only about 4 km south of Shangchen, 
near the base of the Qinling Mountains, north-central China. Although originally correlated with 
either an upper sandy loess dated to 0.78 Ma or a lower sandy loess dated to 1.2–1.09 Ma, (An and 
Ho 1989; Liu et al. 1985), these dated fossil beds were recently re-examined and correlated with 
paleosol sequences dated to 1.65–1.54 Ma (Zhu Z.Y. et al. 2015). The presence of the fossils in these 
paleosol deposits, in addition to the identity of most mammalian fossils found in association with 
the Gongwangling hominin, suggests that subtropical to tropical environments were predominant 
in the region at this time. Such environmental conditions are more reminiscent of the Indomalayan 
biogeographic realm than of the drier and cooler conditions of the Palaearctic realm where 
Gongwangling is now located (Chow and Li 1965; Hu and Qi 1978; Louys et al. 2009). Further 
early Pleistocene hominin material attributable to H. erectus has been recovered from the Chinese 
sites Yuanmou, in Yunnan Province, and Yunxian, in Hubei Province, both in the Indomalayan 
realm, and dated to approximately 1.7 Ma and 1.15 Ma (or 0.8 Ma) respectively (Guo et al. 2013; 
Zhu R.X. et al. 2003, 2008). Most recently, fossil material preserving features typical of H. erectus 
has been recovered from Hualongdong in Anhui Province, eastern China (Wu Xiu-Jie et al. 2019), 
dated to 331–271 ka.

H. erectus material has been recovered from the Palaearctic realm as well, most famously from the 
extensive Zhoukoudian deposits, which may be as old as 0.8 Ma or as young as 230 ka depending 
on the dating technique favoured (Shen et al. 2009; Wu Xinzhi 2004). However, fossil hominins in 
southern China share more similarities with the Southeast Asian samples than with those in northern 
China (Lee and Hudock 2021), suggesting a divergence of evolutionary trajectories between the 
two biogeographical realms inhabited by H. erectus (Kaifu et al. 2005). It would seem, then, that 
the Indomalayan H. erectus fossils probably come from a single evolutionary group who migrated 
from north to south into Indonesia along the ‘Sino-Malayan’ route, which is the most parsimonious 
and probable based on evidence from the biogeography of other Pleistocene mammals (e.g. Kahlke 
1972; Long et al. 1996; Tougard 2001).
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South of southern China and north of Java, Indonesia, fossils of H. erectus are scarce. Isolated 
dental remains recovered from Tham Khuyen Cave and Tham Hai in northern Vietnam, dated to 
approximately 475 ka, have been identified as H. erectus (Ciochon et al. 1996; Olson and Ciochon 
1990), although some of these attributions have been questioned based on the degree of wear on the 
teeth (Demeter et al. 2004).

The earliest dated H. erectus fossil from Java may be the Mojokerto skull, with dates ranging from 
1.8 Ma to 1.43 Ma depending on which dating methods and materials are accepted (Morley et al. 
2020; Morwood et al. 2003; Swisher et al. 1994). The Sangiran hominin fossil ages, which are more 
tightly constrained and more accepted, are approximately 1.5–1.3 Ma based on fission-track and 
uranium-series dating (Matsu’ura et al. 2020). Younger fossils have been recovered from other sites 
in Java, including Trinil and Sambungmacan, and the youngest ever fossil remains of H. erectus were 
probably found at Ngandong, dated to 117–108 ka (Rizal et al. 2019).

The vast area between southern China and northern Vietnam, which were at the northern extent of 
the H. erectus range in the early Pleistocene, and central and eastern Java, which were at the southern 
end, can reasonably be expected to preserve evidence of the passage and migration of this hominin. 
The lack of fossils from this region is probably at least partly due to both limited fieldwork and the 
subsidence of the Sunda Shelf since the Middle Pleistocene. Even though palaeontological fieldwork 
has increased dramatically in Southeast Asia in the last 20 years (e.g. review in Smith et al. 2020), 
the focus of this work has been largely on limestone caves. This makes sense as cave sites often 
preserve fossil material and are a natural feature of the landscape that are relatively easy to locate, 
particularly in dense forest (Louys et al. 2017). Nevertheless, the preservation of fossils in these sites 
is heavily biased towards the late Middle and Late Pleistocene. While deposits of these ages could 
theoretically host H. erectus fossil material, other than a few teeth only identifiable as Homo sp.—
such as those found at Tham Wiman Nakin, Thailand (Tougard et al. 1998) and Ma U’Oi, Vietnam 
(Demeter et al. 2004)—no other hominin material has been recovered. The notable but rare open-
air Pleistocene fossil mammal deposits from Southeast Asia, such as Khok Sung, Thailand (Duval 
et al. 2019; Suraprasit et al. 2018), have likewise failed to yield hominin fossils. Stone tools recovered 
from Southeast Asia, such as the Acheulean-like bifaces from southern Sumatra (Chapter 10, this 
volume), have yet to be dated or definitively associated with any particular hominin species.

The subsidence of the Sunda Shelf had profound effects on the biogeography and environments 
of Southeast Asia. The subsidence of the shelf is estimated as beginning at c. 400 ka based on 
geomorphological observations, numerical simulations of coral reef growth, and shallow seismic 
stratigraphy (Sarr et al. 2019). The continuous exposure of the shelf prior to 400 ka probably 
provided a natural savanna corridor for migration, as well as habitats for numerous large-bodied 
mammals including H. erectus (Husson et al. 2020; Louys and Roberts 2020), and these savannah 
environments may have been a population source for hominin population sinks in northern Asia 
(Dennell 2020; Louys and Turner 2012).

The eventual loss of the Sundaland corridor and the relatively open forest and savanna ecosystems it 
promoted probably disrupted gene flow between populations; it is associated with the extinction of 
several megafauna, including H. erectus (Husson et al. 2020; Louys and Roberts 2020). In addition, 
it is probable that the inundation of the Sunda Shelf submerged many potential archaeological and 
palaeontological sites, contributing to the dearth of fossil hominin records between southern China 
and Java. Here, we explore the question of which paths H. erectus may have taken through this 
corridor, paying particular attention to routes possibly taken following the inundation of the Sunda 
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Shelf. Following previous research examining modern human movements through Southeast Asia 
(Kealy et al. 2018), we take a least-cost pathway approach to that question in an effort to determine 
if any pathways may still be at least partially above water today.

Methods

Sea-levels and palaeogeographic reconstructions
We reconstructed the palaeogeography of Southeast Asia for seven time-and-sea-level slices 
(see  Table 9.1) with the aim of covering a random but representative sample of times and sea-
levels encompassing the last 400 ka. The first two slices were selected based on sea-levels present 
during the hypothetical scenario that Sundaland subsidence occurred prior to 400 ka, namely 
(1) the initial arrival of hominins in the region at 2.1 Ma (a date chosen as indicative of the earliest 
arrival of H. erectus on mainland Asia) and (2) 1.6–1.5 Ma, the earliest secure record of H. erectus 
in Java. The other five reconstructions aimed to account for variations in sea-level that would have 
significantly influenced land extent during the periods when hominins moved through the region 
and that cover most scenarios of sea-level and degree of Sundaland subsidence. Plate tectonic models 
and palaeogeographic reconstructions of the region suggest that, with the exceptions of continuing 
uplift and volcanism local to the Wallacean islands, Southeast Asia had largely reached the present 
geographic layout before 2.1 Ma (Hall 2001; Nugraha and Hall 2018). The aim of our sampling 
strategy was not to capture every time period and its associated sea-levels, but rather to randomly 
sample across the period after the subsidence of the Sunda Shelf and across fluctuating sea-levels to 
observe whether any patterns emerged.

Here we used the Miller et al. (2011) sea-level model, which is based on data from the LR04 
δ18O stack and provides a continuous model of global sea-level fluctuations for the last 180 Ma. 
Due to the broad geographic scope (India–New Guinea, China–Indonesia) and temporal range 
(2.1–0 Ma) of our study, we found the Miller et al. (2011) model to be the most applicable. The 
only exception to this was for the minimum (i.e. lowest) sea-level from the last 2.1 Ma, the Last 
Glacial Maximum (LGM). For our LGM sea-level reconstruction we used the most extreme depth 
of –135 m (135 m below present sea-levels), from the model by Lambeck et al. (2014), which is 
based on more detailed and regionally relevant data from the nearby Huon Peninsula, New Guinea. 
Thus, our LGM reconstruction represents an absolute maximum land extent scenario.

Our five additional time-and-sea-level slices were therefore developed based on these sea-level 
models. The additional five are: (3) 25–22 ka, the LGM and maximum sea-level lowstand, 
(4) 123 ka, the maximum sea-level highstand, (5) 2.1–0 Ma mean sea-level; (6) 2.1–0 Ma upper 
quartile (75th percentile) sea-level; and (7) 2.1–0 Ma lower quartile (25th percentile) sea-level. All 
seven slices are shown in Table 9.1.

Seven palaeogeographic reconstructions were then developed based on the slices’ sea-levels (shown 
in Table 9.1). We used the General Bathymetric Chart of the Oceans (GEBCO_19) dataset (Smith 
and Sandwell 1997) to extract contours corresponding to each of our seven different sea-levels. These 
contours were then used to define the relevant palaeoland extent, and the corresponding sea-level 
difference was added to the GEBCO_19 dataset to model the palaeotopography.
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Table 9.1: Sea-level slices used for palaeogeographic reconstructions.

Model number Name Time period Sea-level  
m bpl1

Ages2  
ka

1 Asia 2.1 Ma –14 415–414, 400–397, 323, 240–237, 118, 8

2 Java 1.6–1.5 Ma –46* 394–388, 217, 287, 219, 195–193, 129, 113, 
104–98, 93, 85–80, 75, 12

3 LGM, lowstand 25–22 ka –135 27–21

4 Highstand 123 ka +9 405, 123

5 Mean 2.1–0 Ma –54 386–382, 306–300, 289–288, 244, 229, 
112–107, 91–86, 79–76, 74, 13

6 75% 2.1–0 Ma –33 418, 396, 335, 311, 235, 218–197, 128, 115, 96

7 25% 2.1–0 Ma –75 374–364, 294, 275–246, 222, 183–173, 64–45

Note: LGM = Last Glacial Maximum.
1 Depth in metres relative to present sea-levels.
2 Approximate ages, over the last c. 400 ka, that correspond with the reconstructions.
* Averaged measurement.
Source: Authors’ analysis.

We then used our palaeotopography to model river and lake systems for each of these scenarios. 
Each reconstructed digital elevation model (DEM) was hydrologically conditioned using the ‘sink’ 
and ‘fill’ tools in ArcGIS v10.7 (ESRI 2018) to smooth out depressions and small errors in the 
dataset. This enabled us to clearly establish flow direction and accumulation across our DEM’s 
using the Hydrology toolset in ArcGIS v10.7. A drainage threshold of 1,000 cells was applied to 
the flow accumulation model to delineate major palaeostreams and rivers. A surface area threshold 
of >100 km2 was also applied to the modelled palaeolakes. Both these thresholds were employed to 
minimise overestimations of reconstructed waterways and focus on those most likely to represent 
major, permanent water bodies in the palaeolandscape.

Least-cost pathway models
The construction of our least-cost pathway models for the seven different palaeogeographic 
reconstructions largely followed the methodology of Kealy et al. (2018). ‘Slope cost’ and ‘river 
distance cost’ were both calculated per Kealy et al. (2018: table 1). We also added an additional cost 
variable not considered by Kealy et al., that of lakes. While the Kealy et al. models focused on the 
island region of Wallacea, where lakes are generally both rare and small, in our region of interest, 
lakes comprise a more substantial proportion of the landscape. Therefore, we included lakes with 
a surface area >100 km2 in our modelling.

As Homo erectus is not generally considered to have possessed the capabilities required for purposeful 
crossing of major water bodies, and presumably avoided such activity where possible, we assigned 
our lakes a cost value of 15. This value corresponds to Field and Lahr’s (2005) ‘sand seas’ value that 
means crossings are unlikely, but remotely possible for short distances. However, while lake surface 
was assigned a high cost, we consider lake edges to represent particularly attractive zones, similarly to 
river systems but to a greater extent (see also Shipton et al. 2018). We therefore assigned a cost value 
of zero to a 0.5 km buffer extending outwards from our lake edges. These additional lake cost values 
were combined with the existing river cost values to create a ‘waterways cost’ surface. The equations 
used are shown in Table 9.2.
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Table 9.2: Equations used in the development of the cost surfaces for the seven palaeogeographic 
reconstructions modelled.

Output Code Formula

Distance from rivers (km) DR Euclidean distance calculated in ArcGIS 10.5.1

River distance cost RC
RC = (TfExp(DR,0.1,maxDR)) +

DR
10

)(

TfExp base factor calculated in ArcGIS based on upper and lower values

Lake surface cost LC LC = 15

Lake distance cost LDC LDC = 0.5 km buffer from lake edge = 0

Waterways cost surface WC WC = RC + LC + LDC

Slope (degrees) S Slope function in ArcGIS 10.5.1 calculated in degrees

Slope cost SC SC =
tan tan S
tan tan 1º

Total cost surface TCS TCS = SC + WC

Source: Authors’ analysis; table modified from Kealy et al. (2018: table 1).

In contrast to the modelling by Kealy et al. (2018), which was focused on Homo sapiens crossing the 
seas of Wallacea, here we returned to the Field and Lahr (2005) model and classified the ocean as 
impermeable. This classification had the additional effect of halting the least-cost paths at the coast, 
making direct access to the islands of Sumatra or Java impossible (according to our model) when 
the Sunda Shelf was submerged. In these scenarios, we also followed the example of Field and Lahr 
(2005) to simply pause our pathway model at the coast and restart it at the closest point on the 
opposite landmass, chosen based on a direct line across the channel.

Numerous studies suggest archaic hominins were incapable of purposeful voyaging (O’Connor et al. 
2017; Shipton et al. 2021), unlike H. sapiens (Bird et al. 2019; Kealy et al. 2018). Archaic hominins 
were, however, clearly capable of accidental sea crossings, as evidenced by the early records of Flores, 
Sulawesi and the Philippines (Brumm et al. 2010; Ingicco et al. 2018; van den Bergh et al. 2016). 
Recent efforts by D’Cunha et al. (2021) attempted to model such drift dispersal routes, but their 
study focused on the major crossing of the Makassar Strait (i.e. Wallace’s Line) and interactions with 
the Indonesian Throughflow. For our study, the longest sea crossing required is c. 26 km (across 
the Sunda Strait between Sumatra and Java) during the period of highest sea-level, significantly 
shorter than the narrowest point of the Makassar Strait. Our methodology reflects this scenario: 
sea crossings are not considered by our pathway model, but minor accidental dispersal across short 
distances is accounted for by the abovementioned ‘stop-start’ approach of Field and Lahr (2005), 
thus allowing path continuation across regions which would otherwise be unreachable within the 
model’s parameters.

To capture migration pathways hypothesised from large-mammal biogeography, namely the Siva-
Malayan and Sino-Malayan routes (de Vos et al. 1999; Tougard 2001; von Koenigswald 1935, 
1939), least-cost pathway models were run from India and China towards Java (specifically, the 
sites of Narmada in India, Gongwangling in China and Sangiran in Java). Not only did we then 
model our least-cost path from these two sources to the Java destination—as in the cases of both 
Kealy et al. (2018) and Field and Lahr (2005)—but we also ran our pathway model in reverse to 
detect any differences between the favourabilities of potential pathways for travel back from Java. 
Unlike the southward paths, the reverse models were not forced to return to particular destinations 
(i.e. Narmada or Gongwangling) as we felt it more realistic to let the model choose its own path 
with a termination option anywhere along the outer rim of our modelled region. This also provided 
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useful ways to compare fixed-destination and non-fixed-destination models. The analysis used 
the Cost Distance, Cost Back-Link and Cost Path tools in the ArcGIS 10.7 (ESRI 2018) Spatial 
Analyst Toolbox.

Results

Palaeogeographic reconstructions
The ages covered by the sea-levels examined, which ranged over the last 400 ka, follow a Poisson 
distribution for point events (p = 0.087) with no density trend detected (Laplace test, U = –1.3447, 
p  = 0.179). This means our sea-level sampling covers an even spread of the palaeogeographic 
scenarios of the last 400 ka, including maximum and minimum extent of sea-level changes. Because 
we also examined the mean and quartiles for sea-levels over the last 2.1 Ma, we feel confident that 
the variable palaeogeography experienced by H. erectus in Southeast Asia has been captured by our 
sampling approach.

The seven palaeogeographic reconstructions (Figures 9.1–9.7) included three scenarios in which 
portions of the Sunda Shelf are submerged to the extent that Java is not connected by land to 
mainland Southeast Asia: Asia (Figure 9.1); Highstand (Figure 9.4), and 75% (Figure 9.6). In these 
scenarios, the Sunda Strait would have to be crossed to reach Java from mainland Southeast Asia. 
However, unlike Asia and Highstand, the 75% reconstruction does model land connectivity between 
mainland Southeast Asia and Sumatra, so it does not include the additional necessity of crossing the 
Malacca and Singapore Straits. In our four other scenarios, sufficient expanses of the Sunda Shelf are 
exposed to allow travel by land at all times between Java and mainland Asia.

Figure 9.1: Least-cost pathways from India (left) and China (right) to Sangiran, Java (red), 
and return pathways (pink) for the Asia scenario with sea-level –14 m relative to present.
Source: doi.org/10.6084/m9.figshare.25255141. Map by authors.

http://doi.org/10.6084/m9.figshare.25255141
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Figure 9.2: Least-cost pathways from India (left) and China (right) to Sangiran, Java (red), 
and return pathways (pink) for the Java scenario with sea-level –46 m relative to present.
Source: doi.org/10.6084/m9.figshare.25255141. Map by authors.

Figure 9.3: Least-cost pathways from India (left) and China (right) to Sangiran, Java (red), 
and return pathways (pink) for the LGM scenario with sea-level –135 m relative to present.
Source: doi.org/10.6084/m9.figshare.25255141. Map by authors.

http://doi.org/10.6084/m9.figshare.25255141
http://doi.org/10.6084/m9.figshare.25255141
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Figure 9.4: Least-cost pathways from India (left) and China (right) to Sangiran, Java (red), 
and return pathways (pink) for the Highstand scenario with sea-level +9 m relative to present.
Source: doi.org/10.6084/m9.figshare.25255141. Map by authors.

Figure 9.5: Least- cost pathways from India (left) and China (right) to Sangiran, Java (red), 
and return pathways (pink) for the Mean scenario with sea-level –54 m relative to present.
Source: doi.org/10.6084/m9.figshare.25255141. Map by authors.

http://doi.org/10.6084/m9.figshare.25255141
http://doi.org/10.6084/m9.figshare.25255141
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Figure 9.6: Least-cost pathways from India (left) and China (right) to Sangiran, Java (red), 
and return pathways (pink) for the 75% scenario with sea-level –33 m relative to present.
Source: doi.org/10.6084/m9.figshare.25255141. Map by authors.

Figure 9.7: Least-cost pathways from India (left) and China (right) to Sangiran, Java (red), 
and return pathways (pink) for the 25% scenario with sea-level –75 m relative to present.
Source: doi.org/10.6084/m9.figshare.25255141. Map by authors.

http://doi.org/10.6084/m9.figshare.25255141
http://doi.org/10.6084/m9.figshare.25255141
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The validity of the models is supported by comparisons with known Homo erectus traits. 
In particular,  the degree to which our modelled pathways follow river corridors to move inland 
while avoiding regions of high elevation and slope corresponds with observations from studies of 
various Acheulean assemblages in western Asia (e.g. Shipton et al. 2018). Unlike the more coastal 
and maritime-focused pathways of Kealy et al.’s (2018) models of H. sapiens Wallacea crossings, 
our models appear to mirror the more terrestrial, inland focus that has been observed for H. erectus 
(Louys and Roberts 2020; O’Connor et al. 2017; Shipton et al. 2021). This comparison is not being 
made to provide circular support for previous H. erectus lifestyle hypotheses, but to demonstrate that 
our choice and weighting of cost variables successfully reflect what current research suggests were 
the probable parameters of H. erectus movement. Thus, our models represent potential paths taken 
by H. erectus based on our current understanding of the palaeolandscape and H. erectus capabilities 
and preferences.

Three general observations arise from our least-cost pathway scenarios. First, within our region of 
interest (mainland Southeast Asia), the routes to and from Java are almost always the same as one 
another—in other words, it makes little difference in our models if the path followed was from north 
to south or from south to north. Significant divergence only occurred in India and northern China, 
both of which lie outside the Southeast Asian biogeographic realm. In only two scenarios, the LGM 
and Mean sea-level models (Figures 9.3 and 9.5), did the path back from Java to China diverge 
temporarily from the China-to-Java path; this occurred in the eastern part of the Indochinese region.

Figure 9.8: Least-cost pathways along the east coast of Sumatra under different sea-level 
conditions.
Note: The major basins of central and southern Sumatra are shown relative to the Air Tawar and Air Semuhun 
stone artefact sources.
Source: Map by authors. Basin locations after Barber and Crow (2005).
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Second, paths from either India or China eventually converge in Southeast Asia, although the 
point of convergence differs between sea-level scenarios. In most instances, the higher the sea-level, 
the further north and west this point of convergence occurs. At its most northern occurrence, in the 
Highstand model (Figure 9.4), it is near the Kanchanaburi Province of Thailand. Its most southern, 
in the LGM model (Figure 9.3), occurs in the now-submerged Johore basin.

Finally, the major difference between the sea-level scenarios occurs in the Siam and East Sunda 
Basins. In the LGM scenario, the least-cost pathway runs through central Sundaland, in a region that 
is now almost entirely submerged. As the sea-level approaches modern levels, however, the pathway 
shifts noticeably west, towards and along the east coast of Sumatra (see Figure 9.8). Although the 
individual pathways through eastern Sumatra differ considerably between the scenarios, this trend 
suggests that eastern Sumatra may have been occupied or traversed (based on the variables included 
in our analysis).

Discussion
The most probable route taken by early hominins and associated megafauna southward into Java 
is  indicated by the model with maximum connectivity between landmasses and would thus have 
been in the middle of the now-submerged Sunda Shelf. Such a route would also have gone through 
more open environments, particularly during the early to Middle Pleistocene (Louys and Roberts 
2020). Unfortunately, identification and recovery of any material from this region will be difficult, 
although, as demonstrated by underwater recovery efforts elsewhere in the world (e.g. Bailey 
et al. 2007; Benjamin et al. 2020), perhaps not impossible. Nevertheless, any such sites, if they 
exist, are unlikely to be found in the near future. Therefore, it is useful to examine areas that are 
currently emergent and which have some support in the literature for their having been used as 
a migration corridor.

Recently, Salles et al. (2021) reported on landscape evolution and connectivity models of the Late 
Pleistocene of Southeast Asia. While the focus of Salles et al.’s (2021) study was on the drivers of 
increase in Southeast Asian biodiversity, their results have two important implications related to 
our modelling. First, their modelling showed high-connectivity migration corridors along the east 
coast of Sumatra coinciding with our westward least-cost pathways (Salles et al. 2021: figure 5). 
High connectivity exists regardless of whether rainforests were considered corridors or barriers to 
migration. The east coast of Sumatra appears to become a migration highway for many species over 
the Late Pleistocene, and, by extrapolation, even during periods of maximum continental shelf 
connectivity, such as the LGM, and the Pleistocene before 400 ka. This is supported by the recovery 
of Acheulean-type artefacts in the Air Tawar and Air Semuhun rivers (Chapter 10, this volume), 
which lie in the regions of high connectivity suggested by Salles et al. (2021), and just west of the 
pathways predicted by our least-cost modelling.

This area, encompassing the piedmont plains and peneplains of southern and eastern Sumatra, 
would therefore appear to be ideal for the recovery of early hominin material in Sumatra. Here, 
however, is where the second implication of the Salles et al. (2021) study for our question is relevant, 
notably the high net cumulative erosion of the east coast of Sumatra they record (Salles et al. 2021: 
figure 1). Structurally, southern and eastern Sumatra are characterised by two major basin systems: 
the South Sumatra Basin and the Central Sumatra Basin, which are separated by the Tigapuluh Hills, 
an upfaulted pre-Neogene block (Barber and Crow 2005; Figure 9.8). The uppermost formations 
in these basins, the Plio-Pleistocene-to-recent Kasai Formation in the South Sumatra Block and 
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the similarly aged Minas Formation in the Central Sumatra Basin, unconformably overlie older 
marine sediments. It is these formations that are likely to preserve material of the right age for 
early hominins.

Extensive faulting in the Central Sumatra Basin largely controls drainage patterns in this region, 
which follow a northwest–southeast direction (Verstappen 1973). In the South Sumatra Basin, 
numerous anticlines control drainage, which is directed more east–west than in the Central Sumatra 
Basin. Denudation following major orogenic events, such as the uplift and volcanism of the Barisan 
Mountains, has produced intense base-levelling of high topographic features. Verstappen (1973) 
reports the loss of 1,000 m, but perhaps up to 5,000 m, of sediment from uplifted blocks and 
anticlines. Weathering of host rock is largely chemical rather than physical due to the region’s high 
rainfall and dense rainforest vegetation, so that scree fans and coarse alluvial fans are rare, particularly 
in the area furthest east of the Barisan Mountains (Verstappen 1973). Most fluvial sediment load in 
the eastern lowlands is therefore composed of silts and clays, and there is extensive erosion, alteration 
of sediment, and rapid formation of soils, fuelling the growth of the eastern and southern alluvial 
plains (Verstappen 1973), with outcrops being rare (Katili 1974).

The least-cost pathways through eastern Sumatra (see Figure 9.8) remain relatively close to the east 
coast—in most instances less than 150 km away. Although some previous authors (e.g. Coleman 
et al. 1970; Keller and Richards 1967) suggested that a large sediment supply came to the east 
coast from inland river sources, a convincing study by Cecil et al. (1993) instead suggests that 
the east coast is an area of net erosion, with the little sedimentation that remains being primarily 
estuarine and marine rather than alluvial. They suggest that most of the sediment currently exposed 
in the east is the result of a marine transgression possibly occurring as recently as 5,000 years ago. 
How far this extends inland is locality-dependent; however, Cecil et al. (1993) suggest that the 
Kampar estuary is tidally influenced for up to 180 km, and flood tide–dominated more than 100 km 
inland. This is consistent with other studies that constructed this zone as a humid, tropical deltaic 
system (Boyd and Peacock 1986; Louys et al. 2021). Any early Pleistocene outcrops within the area 
identified by our modelling were exposed to repeated marine transgressions and regressions, with 
concomitant erosional events and marine sedimentation, over the last 400 ka. Thus, while the area 
of eastern Sumatra is very likely, from a modelling perspective, to preserve remains of early hominins 
in conditions that are today emergent, geological conditions are not highly favourable for such 
deposits. Both sedimentological constraints on preservation and the lack of suitable outcrops for 
stone tool production (e.g. Dennell 2008), as much as a lack of active exploration, probably explain 
why no Pleistocene early hominin fossil material has been recovered from this region.

These factors may also help to explain the absence of hyena fossils from Sumatra. Two species of hyena 
were widespread in Southeast Asia throughout the Pleistocene (Louys 2014). These hyenas probably 
fed in open environments on medium and large herbivores, especially rhinocerotids and bovids 
(Bacon et al. 2015, 2018), but potentially also including Southeast Asian hominins. Nevertheless, no 
hyena fossils have been recovered from any of the cave sites in Sumatra. As predators tend to follow 
prey closely, hyenas, like Homo erectus, may have been restricted to regions currently submerged. 
However, as noted in Chapter 5, more open areas may have existed in the Padang Highlands during 
the Middle Pleistocene, and the possibility remains that Homo erectus and hyena fossils may yet be 
recovered from the western side of Sumatra.

One final possible emergent area that our models identified as likely to have been traversed by Homo 
erectus and its potential predators and prey—one with less cumulative erosion than the east coast 
of Sumatra (Salles et al. 2021: figure 1)—is the Riau archipelago. Four of our seven models suggest 
pathways close to these islands, with two (High and Asia) suggesting pathways that traverse the 
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modern, emergent islands of Karimun Besar and Bulan. Prospecting difficulties do arise in the Riau 
archipelago due to the age of the rocks there (they are mostly Mesozoic). Other factors, such as the 
ready availability of geological resources for tool manufacture (e.g. Dennell 2008) or the distribution 
of regional topographic and edaphic constraints (e.g. Devès et al. 2014; Kübler et al. 2016), may 
be equally important in determining the success for the recovery of early hominins and associated 
faunas from these islands.

Conclusion
Our least-cost pathway modelling suggests that the most probable route southward through 
Sundaland would have been through the middle of the now-sunken continental shelf. This route 
would have benefited hominins such as Homo erectus by being much more open than today’s tropical 
rainforests (Louys and Roberts 2020). Nevertheless, any material preserved by these early hominins 
is currently submerged and inaccessible. The presently unsubmerged (and hence accessible) areas 
that are potentially on a major migration route southward into Java are mostly situated on the east 
coast of Sumatra. As sea-levels approach the highs seen today, our least-cost modelling moves the 
most probable such route westward within Sumatra, towards the Barisan Mountains. These routes 
coincide with biodiversity connectivity corridors identified through other researchers’ landscape 
evolution modelling (Salles et al. 2021). Unfortunately, these areas are also net erosive regions, 
highly susceptible to chemical erosion and pedogenesis, hosting relatively few outcrops, and largely 
overlaid with marine sedimentation, particularly along the east coast. In such conditions, long-term 
preservation of early Pleistocene material is unlikely, so such material will continue to be difficult to 
find. Based on our modelling results and previously established erosion patterns, the islands of the 
Riau archipelago may be an alternative option for future research efforts.
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